

"Whatever Nature has in store for mankind, unpleasant as it may be, men must accept, for ignorance is never better than knowledge"

- Enrico Fermi

Nuclear Composition

The atomic nucleus is made of N neutrons and Z protons

The number of nucleons, A = N + Z

The general notation is, ${}^{A}_{Z}\boldsymbol{X}_{N}$

particle	m (kg)	m (amu)	mc² (MeV)	charge	spin
proton	1.6727×10 ⁻²⁷	1.007276	938.27	+e	1/2
neutron	1.6749×10 ⁻²⁷	1.008665	939.57	0	1/2

Nuclear Size

Radius of a typical nucleus is about 10 fm = 10⁻¹⁴ m

Neutron scattering from nuclei can determine the nuclear radius.

radius

 $1 \, \text{fm} = 10^{-15} \, \text{m}$

Nuclear Charge Distribution

The atomic nucleus is positively charged

In the interior of heavier nuclei (Au, Bi, ...), charge is uniformly distributed.

For lighter nuclei (He, C, Mg ..) there is a steady decrease of density

Elastic scattering of electrons from nuclei can accurately determine the nuclear charge distribution.

Nuclear Masses and Binding Energies

Binding Energy determines the stability of a nucleus

Binding Energy = sum of all proton and neutron mass-energies minus nuclear mass-energy

$$B = Zm_{proton}c^{2} + Nm_{neutron}c^{2} - M_{nucleus}c^{2} > 0$$

For all but the lightest nuclei the average binding energy per nucleon is about 8 MeV.

Nuclear Shapes

Nuclei with quadrupole Q = 0 are spherical.

Electric quadrupole moment Q is a measure of the shape of a nucleus

Nuclear Rotations

A nucleus can rotate with very high spin and deform itself

15000

5000

 γ -ray energy (keV)

10000 Jo 01

Super-deformation

Theory also predicts some exotic shapes for the spinning nucleus

Nuclear Oscillations/Vibrations

notes

- separate rigid distributions.
- Rigid distributions undergo harmonic displacement w. r. t each other.

•E_{GDR} \propto A^{-1/6}

Classification of Nuclei

- Classification of nuclei
 - Unstable nuclei found in nature
 - Give rise to natural radioactivity
 - Nuclei produced in the laboratory through nuclear reactions
 - Exhibit artificial radioactivity
- Three series of natural radioactivity exist
 - Uranium
 - Actinium
 - Thorium

^{© 2003} Thomson - Brooks Cole

Nuclear Decay

- Beta particles
 - · The particles are either electrons or positrons
 - A positron is the antiparticle of the electron
 - It is similar to the electron except its charge is +e
- Gamma rays
 - The "rays" are high energy photons

Nuclear Lifetime

• The number of nuclei that decay in given time follows a decay curve given as

$$N = N_0 e^{-\lambda t}$$
 λ – decay constant

- The *half-life* T_{1/2} is also a useful parameter
- The half-life is defined as the time it takes for half of any given number of radioactive nuclei to decay

$$T_{1/2} = \frac{\ln 2}{\lambda} = \frac{0.693}{\lambda}$$

Alpha Decay

- When a nucleus emits an alpha particle it loses two protons and two neutrons
 - N decreases by 2
 - Z decreases by 2
 - A decreases by 4
- Symbolically

 $^{A}_{Z}X \rightarrow ^{A-4}_{Z-2}Y + ^{4}_{2}He$

- X is called the parent nucleus
- Y is called the *daughter nucleus*

Alpha Decay Paradox

Consider,

$$^{238}_{92}U \rightarrow^{234}_{90}Th + \alpha$$
 $KE(\alpha) = 4.275 \times \left(\frac{234}{238}\right) = 4.2 MeV$

A 4.2 MeV a particle is able to come out of the Uranium nucleus

However, α particles with KE(α) = 9 MeV from ²¹²Po are unable to penetrate close enough to ²³⁸U₉₂

If 9 MeV α particle is not able to penetrate the Coulomb barrier from outside, then how is the 4.2 MeV α particle able to penetrate from inside ?

Alpha Decay Paradox – Barrier Penetration

Gamow, Gurney & Condon applied quantum mechanics of particle tunnelling through the barrier to the problem of α decay

Gamow theory of Alpha Decay

The half-life is in years, the energy is in MeV, and Z refers to the daughter nucleus. Tv

2R

Calculating half-life from the penetration probability T

$$238_{92} U \longrightarrow_{90}^{234} Th + \alpha$$

$$E = 4.2 \, MeV, \quad Z_D = 90 \quad \& \quad R \sim 9.3 \, fm$$

$$T \sim \exp\left\{-3.97 \frac{90}{\sqrt{4.2}} + 2.98\sqrt{90 \times 9.3}\right\}$$

$$= \exp(-88) = 6 \times 10^{-39}$$

$$6 \times 10^{-39} \times 7.5 \times 10^{20} = 4.5 \times 10^{-18} \, s^{-1}$$

$$= \lambda = \frac{\ln 2}{t_{\chi_2}}$$

$$\therefore \quad t_{\chi_2} = 1.54 \times 10^{17} \, s = 4.9 \times 10^9 \, yr$$

$$(\exp t = 4.46 \times 10^9 \, yr)$$

Time to 'cross' the nucleus is $t = \frac{2R}{2}$ v_{α} Attempt frequency $f = \frac{1}{t} = \frac{v_{\alpha}}{2R}$

("knocking rate") is

Alpha particle speed = ? $E_{\alpha} \sim 4.2 MeV$ (*m* = 3727.4 *MeV*) $\therefore v_{\alpha} = \sqrt{\frac{2E}{m}} \sim 1.4 \times 10^7 \ m/s$ $\therefore f = \frac{1.4 \times 10^{7}}{2 \times 9.3 \times 10^{-15}} - (7.5 \times 10^{20})^{-15}$

Geiger-Nuttall relation

The α decay theory is able to account for the Geiger-Nuttall law

Beta Decay

• Symbolically

$$A_{Z}^{A}X \rightarrow A_{Z+1}^{A}Y + e^{-} + \overline{\nu}$$
$$A_{Z}^{A}X \rightarrow A_{Z-1}^{A}Y + e^{+} + \nu$$

- -v is the symbol for the neutrino
- $-\overline{\nu}$ is the symbol for the antineutrino
- In beta decay, the following pairs of particles are emitted
 - An electron and an antineutrino
 - A positron and a neutrino

Beta Decay Paradox

Just like the α decay, β decay also is an energy transition between two definite energy.

Thus, mono-energetic (single energy) β ray is expected.

However, the kinetic energy spectrum of β ray is continuous, implying that the electrons emitted in β decay process have range of kinetic energy.

Also, the beta particle emission violates the conservation of energy and angular momentum.

Pauli's Neutrino Hypothesis

 To account for the continuous energy spectrum and the violation of energy and momentum conservation, Pauli proposed the existence of another particle – the neutrino.

- Pauli postulated that the neutrino must have
 - Zero electrical charge
 - Mass much smaller than the electron, probably not zero
 - Spin of ¹/₂
 - And interact very weakly with matter

Diagram showing the sharing of total disintegration energy between the b particle and the neutrino

$$A_{Z} X \rightarrow A_{Z+1} Y + e^{-} + \overline{v}$$
$$A_{Z} X \rightarrow A_{Z-1} Y + e^{+} + v$$

Fermi's theory of Beta Decay

Using Pauli's neutrino Fermi proposed a simple theory of β decay using his golden rule

The transition probability is given by

$$\lambda_{fi} = \frac{2\pi}{\hbar} \left| V_{fi} \right|^2 \rho_f$$

"matrix element" $V_{fi} = \int \psi_f^* V \psi_i \, dv$

The density of states

$$\rho \propto p_e^2 (E - E_e)^2$$

The transition rate is therefore:

$$\lambda \propto p_e^2 (E - E_e)^2$$

 $\therefore \frac{\sqrt{\lambda}}{p_e} \propto (E - E_e)^2$

Gamma Decay

- Gamma rays are given off when an excited nucleus "falls" to a lower energy state
 - Similar to the process of electron "jumps" to lower energy states and giving off photons
- The excited nuclear states result from "jumps" made by a proton or neutron

$$110^{m} Ag \rightarrow 110^{n} Ag + \gamma$$
No change in Z, N or A
Nucleus can also de-excite by
'Internal Conversion' (excess energy
given to an ATOMIC electron)
nucleus

Multipolarities in Gamma transition

- Multipole Radiation: Electric and Magnetic
- Opposite parities

 $\pi(EL) = (-1)^{L} \& \pi(ML) = (-1)^{L+1}$

- Transition between nuclear states: $I_i \xrightarrow{\gamma} I_f$
- A multipole of order *L* transfers *L*ħ angular momentum per photon

$$\vec{I}_i = \vec{L} + \vec{I}_f$$

e.g.
$$(I_i, I_f) = \left(\frac{3}{2}, \frac{5}{2}\right) \rightarrow L = 1, 2, 3, 4$$

i.e. $\left|I_i - I_f\right| \le L \le \left(I_i + I_f\right)$

• 'Electric' or 'Magnetic' depends on parities of nuclear states

- $L = 1 \rightarrow$ Dipole
- $L = 2 \rightarrow$ Quadrupole
- $L = 3 \rightarrow$ Octupole
- $L = 4 \rightarrow$ Hexadecapole etc

Nuclear Stability

There are 266 stable nuclear isotopes. There are about 3000 radioactive (unstable) nuclides with lifetimes greater than about 1 millisecond.

The line of stability lies above the line N=Z because of the Coulomb repulsion between protons.

Neutron-rich Nuclei

A nucleus can have excess neutrons than those found in stable nucleus and have exotic structures

Nuclear Skin Thickness (Halo Nucleus)

The skin thickness t is defined to be the distance from 90% to 10% of the central nuclear density.

