
Introduction to Nuclei – II
(The physical properties)

“Whatever Nature has in store for mankind, unpleasant as it may be, men must 
accept, for ignorance is never better than knowledge”

-

 

Enrico

 

Fermi



particle m (kg) m (amu) mc2

 

(MeV) charge spin

proton 1.6727×10-27 1.007276 938.27 +e 1/2

neutron 1.6749×10-27 1.008665 939.57 0 1/2

Nuclear Composition

The atomic nucleus is made of N 
neutrons and Z protons

N
A
Z X

The number of nucleons, A = N + Z 

The general notation is,  



Nuclear Size

Neutron 
scattering from 
nuclei can
determine the 
nuclear radius.

fm             radius ±= 3/1)02.007.1( AR

m 10  fm 1 -15=

Radius of a typical 
nucleus is about 
10 fm = 10-14 m



Nuclear Charge Distribution

In the interior of heavier nuclei 
(Au, Bi, …), charge is uniformly 
distributed.

For lighter nuclei (He, C, Mg 
..) there is a steady decrease 
of density

Elastic scattering of electrons 
from nuclei can accurately 
determine the nuclear charge 
distribution.

The atomic nucleus is positively 
charged



Nuclear Masses and Binding Energies

Binding Energy = sum of 
all proton and neutron 
mass-energies minus 
nuclear mass-energy

0222 >−+= cMcNmcZmB nucleusneutronproton

For all but the lightest nuclei the average
binding energy per nucleon

 
is about 8 MeV.

Iron (Fe) is the 
most stable 
nucleus.

Binding Energy 
determines the stability of 
a nucleus



Nuclear Shapes

Q > 0 are prolate Q < 0 are oblate

Nuclei with quadrupole
 

Q = 0 are spherical. 

Electric quadrupole

 

moment Q is a measure of the shape of a nucleus 



Nuclear Rotations

Super-deformation 
has been found in 
several regions of 
the nuclear chart, 
in nuclei around 

A=60, A=80, 
A=130, A=150 and 

A=190. 

A nucleus can rotate 
with very high spin and 

deform itself

Theory also predicts some exotic 
shapes for the spinning nucleus



Nuclear Oscillations/Vibrations

•

 

Protons & neutrons behave as two interpenetrating but 
separate rigid distributions.

•

 

Rigid distributions undergo harmonic displacement w. 
r. t  each other.

•EGDR ∝

 

A-1/6

A nucleus 
can vibrate 
or oscillate 
in different 

modes, 
just like 

the string 
of a violin 

can vibrate 
with 

different 
notes



•
 

Classification of nuclei
–

 
Unstable nuclei found in nature

•
 

Give rise to natural radioactivity
–

 
Nuclei produced in the laboratory through nuclear 
reactions

•
 

Exhibit artificial radioactivity
•

 
Three series of natural radioactivity exist
–

 
Uranium

–
 

Actinium
–

 
Thorium

Classification of Nuclei



Decay Series
 of 232Th

•
 

Series starts 
with 232Th

•
 

Processes 
through a series 
of alpha and 
beta decays

•
 

Ends with a 
stable isotope 
of lead, 208Pb



Nuclear Decay

A Nucleus can decay by emitting three types of radiation
–

 

Alpha

 

particles
•

 

The particles are 4He nuclei
–

 

Beta

 

particles
•

 

The particles are either electrons or positrons
–

 

A positron is the antiparticle of the electron
–

 

It is similar to the electron except its charge is +e
–

 

Gamma

 

rays
•

 

The “rays”

 

are high energy photons



•

 

The number of nuclei that 
decay in given time follows a 
decay curve given as

•

 

The half-life T1/2

 

is also a 
useful parameter

•

 

The half-life is defined as the 
time it takes for half of any 
given number of radioactive 
nuclei to decay

Nuclear Lifetime

0
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decay constant



•

 

When a nucleus emits an alpha particle

 

it loses two protons and two 
neutrons
–

 

N decreases by 2
–

 

Z decreases by 2
–

 

A decreases by 4
•

 

Symbolically

–

 

X is called the parent nucleus
–

 

Y is called the daughter nucleus

HeYX 4
2

4A
2Z

A
Z +→ −

−

Alpha Decay

A typical 
α emitter



Alpha Decay Paradox

A 4.2 MeV

 

a particle is able to come out of the Uranium nucleus

Consider,

However, α

 

particles with KE(α) = 9 MeV

 

from 212Po are unable to 
penetrate close enough to 238U92

If 9 MeV α particle is not able 
to penetrate the Coulomb 

barrier from outside, then how 
is the 4.2 MeV α

 

particle able 
to penetrate from inside ?



Alpha Decay Paradox –
 

Barrier Penetration

Gamow, Gurney & Condon applied quantum 
mechanics of particle tunnelling through the 
barrier to the problem of α

 

decay
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The α
 

particle can tunnel
through the potential barrier
attempting to confine it to
the nuclear interior.  The
greater the energy the
shorter the half-life.

The half-life is in years, the energy is in 
MeV, and Z refers to the daughter nucleus.

Gamow theory of Alpha Decay



Calculating half-life from the penetration probability T



Geiger-Nuttall
 

relation
The α

 
decay theory is able to account for the Geiger-Nuttall

 law



•

 

Symbolically

–

 

ν

 

is the symbol for the neutrino
–

 

is the symbol for the antineutrino

•

 

In beta decay, the following pairs of particles are emitted
–

 

An electron and an antineutrino
–

 

A positron and a neutrino

ν++→

ν++→
+

−

−
+

eYX
eYX
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A
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A
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Beta Decay



Beta Decay Paradox

Just like the α

 

decay, β

 

decay also is an 
energy transition between two definite 
energy.

Thus, mono-energetic (single energy) β

 ray is expected.

However, the kinetic energy spectrum of 
β

 

ray is continuous, implying that the 
electrons emitted in β

 

decay process 
have range of kinetic energy.

Also, the beta particle emission violates 
the conservation of energy and angular 
momentum.



Pauli’s Neutrino Hypothesis

•

 

To account for the continuous 
energy spectrum and the violation 
of energy and momentum 
conservation, Pauli proposed the 
existence of another particle –

 

the 
neutrino.

•

 

Pauli postulated that the neutrino 
must have
–

 

Zero electrical charge
–

 

Mass much smaller than the 
electron, probably not zero

–

 

Spin of ½
–

 

And interact very weakly with 
matter

ν++→

ν++→
+

−

−
+

eYX
eYX

A
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A
Z

A
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A
Z

Diagram showing the sharing of total disintegration 
energy between the b particle and the neutrino



Fermi’s theory of Beta Decay
Using Pauli’s neutrino Fermi proposed a 
simple theory of β

 

decay using his golden rule



•

 

Gamma rays are given off when an excited nucleus “falls”

 

to a lower 
energy state
–

 

Similar to the process of electron “jumps”

 

to lower energy states and 
giving off photons

•

 

The excited nuclear states result from “jumps”

 

made by a proton or neutron

Gamma Decay



Multipolarities
 

in Gamma transition



There are 266 stable

 

nuclear
isotopes.  There are about 3000
radioactive

 

(unstable) nuclides 
with lifetimes greater than about 
1 millisecond.

The line of stability

 

lies above
the line N=Z because of the
Coulomb repulsion between
protons.

Nuclear Stability



Neutron-rich Nuclei

A nucleus 
can have 
excess 

neutrons 
than those 
found in 
stable 

nucleus 
and have 

exotic 
structures



The skin thickness t
 

is 
defined to be the distance
from  90% to 10% of the 
central nuclear density.

Nuclear Skin Thickness (Halo Nucleus)
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